sábado, 17 de diciembre de 2011

ENERGIA CINETICA

Energía Cinética (Ec)

 


Cuerpo en movimiento.
Cuando un cuerpo está en movimiento posee energía cinética ya que al chocar contra otro puede moverlo y, por lo tanto, producir un trabajo.

Para que un cuerpo adquiera energía cinética o de movimiento, es decir, para ponerlo en movimiento, es necesario aplicarle una fuerza. Cuanto mayor sea el tiempo que esté actuando dicha fuerza, mayor será la velocidad del cuerpo y, por lo tanto, su energía cinética será también mayor.

Otro factor que influye en la energía cinética es la masa del cuerpo.

Por ejemplo, si una bolita de vidrio de 5 gramos de masa avanza hacia nosotros a una velocidad de 2 km / h no se hará ningún esfuerzo por esquivarla. Sin embargo, si con esa misma velocidad avanza hacia nosotros un camión, no se podrá evitar la colisión.

La fórmula que representa  la Energía Cinética es la siguiente:

 E c   =   1 / 2 •  m •  v 2

   E c  = Energía cinética

   m  =  masa

    v  =  velocidad

Cuando un cuerpo de masa  m  se mueve con una velocidad  v  posee una energía cinética que está dada por la fórmula escrita más arriba.

En esta ecuación, debe haber concordancia entre las unidades empleadas. Todas ellas deben pertenecer al mismo sistema. En el Sistema Internacional (SI), la masa  m se mide en  kilogramo (kg) y  la velocidad  v en  metros partido por segundo ( m / s), con lo cual la energía cinética resulta medida en Joule ( J ).

ENERGIA POTENCIAL

Todo cuerpo que se ubicado a cierta altura del suelo posee energía potencial.

Esta afirmación se comprueba cuando un objeto cae al suelo, siendo capaz de mover o deformar objetos que se encuentren a su paso. El movimiento o deformación será tanto mayor cuanto mayor sea al altura desde la cual cae el objeto.

Otra forma de energía potencial es la que está almacenada en los alimentos, bajo la forma de energía química. Cuando estos alimentos son procesados por nuestro organismo, liberan la energía que tenían almacenada.

Para una misma altura, la energía del cuerpo dependerá de su masa. Esta energía puede ser transferida de un cuerpo a otro y aparecer como energía cinética o de deformación. Sin embargo, mientras el cuerpo no descienda, la energía no se manifiesta: es energía potencial.

Todos los cuerpos tienen energía potencial que será tanto mayor cuanto mayor sea su altura. Como la existencia de esta energía potencial se debe a la gravitación (fuerza de gravedad), su nombre más completo es energía potencial gravitatoria.

Ver. PSU: Física; Pregunta 09_2005(2)

Entonces:

Energía potencial gravitatoria es aquella energía que poseen los cuerpos que se encuentran en altura. Esta energía depende de la masa del cuerpo y de la atracción que la Tierra ejerce sobre él (gravedad).
 

¿Cómo calcular la Energía Potencial Gravitatoria?

Si un cuerpo de masa  m  se sitúa a una altura  h  arriba de un nivel de referencia, este cuerpo posee una energía potencial gravitatoria con respecto a este nivel, la cual se expresa mediante la siguiente fórmula:

m = masa

g = constante de la fuerza de gravedad

h = altura

Ep  =   m · g · h

De acuerdo a la fórmula, la energía potencial está relacionada con la masa del cuerpo y con la posición que ocupa; cuanto más grande sea la masa del cuerpo, y cuanto mayor sea la altura a la que se encuentre, tanto mayor será su Energía potencial gravitacional.

Energía Potencial Elástica: Si se considera un resorte que cuelga del techo y uno de sus extremos está fijo, adosado al techo, mientras su otro extremo está libre, al ejercer una fuerza sobre el resorte éste se puede comprimir, disminuyendo su longitud. Para que el resorte no se estire será necesario mantener una fuerza sobre él. Al acabarse la fuerza, el resorte se descomprime, estirándose.

Si ahora se tiene el resorte con un extremo fijo sobre la mesa, y se ejerce una fuerza para comprimirlo, si el extremo libre de este resorte se pone en contacto con algún cuerpo, al descomprimirse puede provocar que el objeto se mueva, comunicándole energía cinética (energía que poseen los cuerpos cuando se mueven).

Este hecho pone de manifiesto que el resorte comprimido posee energía almacenada que se denomina energía potencial elástica.

Cuando se salta en una cama elástica, también se pone de manifiesto este hecho; la persona que cae desde cierta altura sobre la cama tiene inicialmente una energía potencial que irá disminuyendo progresivamente durante la caída, mientras que su energía cinética (de movimiento) irá aumentando. Al chocar contra la superficie de la cama se perderá energía cinética; los resortes de la cama se colocarán tensos. La energía cinética se ha transferido a los resortes, almacenándose en forma de energía potencial elástica. Ésta se pondrá de manifiesto rápidamente. Los resortes se descomprimirán y le comunicarán movimiento al cuerpo hacia arriba, adquiriendo cierta velocidad, es decir, energía cinética. Ésta irá disminuyendo con la altura mientras que la energía potencial irá aumentando ya que aumentará la altura del cuerpo.

Fuentes de ENERGIA

FUENTES DE ENERGÍA
Las Fuentes de energía son los recursos existentes en la naturaleza de los que la humanidad puede obtener energía utilizable en sus actividades.
El origen de casi todas las fuentes de energía es el Sol, que "recarga los depósitos de energía". Las fuentes de energía se clasifican en dos grandes grupos: renovables y no renovables; según sean recursos "ilimitados" o "limitados".


FUENTES DE ENERGÍA RENOVABLES
Las Fuentes de energía renovables son aquellas que, tras ser utilizadas, se pueden regenerar de manera natural o artificial. Algunas de estas fuentes renovables están sometidas a ciclos que se mantienen de forma más o menos constante en la naturaleza.
 

Existen varias fuentes de energía renovables, como son:

Energía mareomotriz (mareas)
Energía hidráulica (embalses)
Energía eólica (viento)
Energía solar (Sol)
Energía de la biomasa (vegetación)

FUENTES DE ENERGÍA NO RENOVABLES
Las Fuentes de energía no renovables son aquellas que se encuentran de forma limitada en el planeta y cuya velocidad de consumo es mayor que la de su regeneración.

 

Existen varias fuentes de energía no renovables, como son:

 

Los combustibles fósiles (carbón, petróleo y gas natural)
La energía nuclear (fisión y fusión nuclear)

PRINCIPIO DE CONSERVACION DE LA ENERGIA

PRINCIPIO DE CONSERVACIÓN DE LA ENERGÍA
El Principio de conservación de la energía indica que la energía no se crea ni se destruye; sólo se transforma de unas formas en otras. En estas transformaciones, la energía total permanece constante; es decir, la energía total es la misma antes y después de cada transformación.

 

En el caso de la energía mecánica se puede concluir que, en ausencia de rozamientos y sin intervención de ningún trabajo externo, la suma de las energías cinética y potencial permanece constante. Este fenómeno se conoce con el nombre de Principio de conservación de la energía mecánica.

 

UNIDADES DE ENERGIA

Caloría Es la cantidad de energía necesaria para elevar la temperatura de un gramo de agua de 14,5 a 15,5 grados centígrados.
La frigoría es la unidad de energía utilizada en refrigeración y es equivalente a absorber una caloría.
Termia prácticamente en desuso, es igual a 1.000.000 de calorías o a 1 Mcal
Kilovatio hora (kWh) usada habitualmente en electricidad. Y sus derivados MWh, MW año
julio = 0,24 calorías.
Caloría grande usada en Biología/Alimentación y Nutrición = 1 Cal = 1 kcal = 1.000 cal
Tonelada equivalente de petróleo 41.840.000.000 julios = 11.622 kWh.
Tonelada equivalente de carbón 29.300.000.000 julios = 8138.9 kWh.
Tonelada de refrigeración
BTU, Bristish Thermal Unit
La energía química es la que hace funcionar nuestros coches, motos, camiones, barcos y aviones, y la extraemos de combustibles fósiles como el petróleo, el gas o el carbón, o bien fabricando combustibles a partir de otras energías.

ENERGIA

La energía desde el punto de vista tecnológico y económico, es un recurso natural primario o derivado, que permite realizar trabajo o servir de subsidiario a actividades económicas independientes de la producción de energía. Como todas las formas de energía una vez convertidas en la forma apropiada son básicamente equivalentes, toda la producción de energía en sus diversas formas puede ser medida en las mismas unidades. Una de las unidades más comunes es la tonelada equivalente de carbón que equivale a :29.3·109 julios o 8138.9 kWh.

TIPOS DE ENERGIA
Energía sonora: energía surgida de la vibración mecánica.
Energía radiante: La existente en un medio físico, causada por ondas electromagnéticas, mediante las cuales se propaga directamente sin desplazamiento de la materia


Durante el siglo XX la energía se usa en forma de combustibles químicos o en forma de electricidad. Esta segunda forma permite un transporte barato hasta los puntos de consumo. Sin embargo, la energía eléctrica usada actualmente es siempre una forma secundaria de energía, obtenida a partir de alguna otra forma primaria de energía o tecnología energética entre estas formas están:
Energía atómica o nuclear: fuerza nuclear fuerte
Energías renovables:
Energía eólica
Energía geotérmica
Energía hidráulica
Energía mareomotriz
Energía solar
Energía cinética
Biomasa
Gradiente térmico oceánico
Energía azul
Energía termoeléctrica generada por termopares
Energía nuclear de fusión
Fuentes de Energías no renovables (o nuclear-fósil):
Carbón
Centrales nucleares
Gas Natural
Petróleo

LA ENERGIA UNA IDEA FRUCTIFERA Y ALTERNATIVA A LA FUERZA

El término energía (del griego ἐνέργεια/energeia, actividad, operación; ἐνεργóς/energos = fuerza de acción o fuerza trabajando) tiene diversas acepciones y definiciones, relacionadas con la idea de una capacidad para obrar, transformar o poner en movimiento.
En física, «energía» se define como la capacidad para realizar un trabajo. En tecnología y economía, «energía» se refiere a un recurso natural (incluyendo a su tecnología asociada) para extraerla, transformarla y darle un uso industrial o económico.

jueves, 1 de diciembre de 2011

25.- Agujeros Negros Y Materia Oscura - El Universo

ASTRÓNOMOS RELEVANTES EN LA HISTORIA

Astrónomos relevantes en la Historia
Artículo principal: Astrónomo
A lo largo de la historia de toda la humanidad ha habido diferentes puntos de vista con respecto a la forma, conformación, comportamiento y movimiento de la tierra, hasta llegar al punto en el que vivimos hoy en día. Actualmente hay una serie de teorías que han sido comprobadas científicamente y por lo tanto fueron aceptadas por los científicos de todo el mundo. Pero para llegar hasta este punto, tuvo que pasar mucho tiempo, durante el cual coexistieron varias teorías diferentes, unas más aceptadas que otras. A continuación se mencionan algunas de las aportaciones más sobresalientes realizadas a la Astronomía.
Tales de Mileto

Siglo VII a. C. Aproximadamente

Concibió la redondez de la tierra.
Teorizó que la Tierra era una esfera cubierta por una superficie redonda que giraba alrededor de esta (así explicaba la noche) y que tenía algunos agujeros por los cuales se observaba, aun en la oscuridad nocturna, un poco de la luz exterior a la tierra; la que él llamo "fuego eterno".
Discípulos de Pitágoras

Siglo V a. C. Aproximadamente

Sostuvieron que el planeta era esférico y que se movía en el espacio.
Tenían evidencia de nueve movimientos circulares; los de las estrellas fijas, los de los 5 planetas, los de la Tierra, la Luna y el Sol.
Platón

del 427 a. C. al 347 a. C.

Dedujo que la Tierra era redonda basándose en la sombra de esta sobre la Luna durante un eclipse lunar.
Concibió a la Tierra inmóvil y como centro del Universo.
Aristóteles

del 384 a. C. - 322 a. C.

Sostenía que la Tierra era inmóvil y, además era el centro del Universo.
Aristarco de Samos

del 310 a. C. al 230 a. C.

Sostenía que la Tierra giraba, que se movía y no era el centro del Universo, proponiendo así el primer modelo heliocéntrico. Además determinó la distancia Tierra-Luna y la distancia Tierra-Sol.
Eratóstenes

del 276 a. C. al 194 a. C.

Su contribución fue el cálculo de la circunferencia terrestre.
Hiparco de Nicea

Año 150 a. C.

Observó y calculó que la Tierra era esférica y estaba fija.
El Sol, la Luna y los planetas giraban alrededor de su propio punto.
Posidonio de Apamea

del 135 a. C. al 31 a. C.

Observó que las mareas se relacionaban con las fases de la Luna.
Claudio Ptolomeo

Año 140.

Elaboró una enciclopedia astronómica llamada Almagesto.
Nicolás Copérnico

(1477 - 1543).

Consideró al sol en el centro de todas las órbitas planetarias.
Galileo Galilei

(1564 - 1642).

Con su telescopio observó que Júpiter tenía cuatro lunas que lo circundaban.
Observó las fases de Venus y montañas en la Luna.
Apoyó la teoría de Copérnico.
Johannes Kepler

(1571 - 1630).

Demostró que los planetas no siguen una órbita circular sino elíptica respecto del Sol en un foco del elipse derivando de esto en su primera ley.
La segunda ley de Kepler en la cual afirma que los planetas se mueven más rápidamente cuando se acercan al Sol que cuando están en los extremos de las órbitas.
En la tercera ley de Kepler establece que los cuadrados de los tiempos que tardan los planetas en recorrer su órbita son proporcionales al cubo de su distancia media al Sol.
Isaac Newton

(1642 - 1727).

Estableció la ley de la Gravitación Universal:
“Las fuerzas que mantienen a los planetas en sus órbitas deben ser recíprocas a los cuadrados de sus distancias a los centros respecto a los cuáles gira”.

Estableció el estudio de la gravedad de los cuerpos.
Probó que el Sol con su séquito de planetas viaja hacia la constelación del Cisne.
Albert Einstein

(1879 - 1955).

Desarrolló su Teoría de la Relatividad.
[editar]Ampliaciones
Entre otros:
Henrietta Swan Leavitt
Hipatia
Gerard Kuiper
Edwin Hubble
Milton Humason
Harlow Shapley
Alexander Friedmann
Vesto Slipher
Georges Édouard Lemaître
Herman Bondi, Thomas Gold y Fred Hoyle
George Gamow
Vera Rubin
[editar]Apéndice II - Ramas de la astronomía
Debido a la amplitud de su objeto de estudio la Astronomía se divide en diferentes ramas. Aquellas ramas no están completamente separadas. La astronomía se encuentra dividida en cuatro grandes ramas:
Astronomía de posición. Tiene por objeto situar en la esfera celeste la posición de los astros midiendo determinados ángulos respecto a unos planos fundamentales, utilizando para ello diferentes sistemas de coordenadas astronómicas. Es la rama más antigua de esta ciencia. Describe el movimiento de los astros, planetas, satélites y fenómenos como los eclipses y tránsitos de los planetas por el disco del Sol. También estudia el movimiento diurno y el movimiento anual del Sol y las estrellas. Incluye la descripción de cada uno de los planetas, asteroides y satélites del Sistema Solar. Son tareas fundamentales de la misma la determinación de la hora y la determinación para la navegación de las coordenadas geográficas.


Astronomía planetaria o Ciencias planetarias: un fenómeno similar a un tornado en Marte. Fotografiado por el Mars Global Surveyor, la línea larga y oscura está formada por un vórtice de la atmósfera marciana. El fenómeno toca la superficie (mancha negra) y asciende por la orilla del cráter. Las vetas a la derecha son dunas de arena del fondo del cráter.
Mecánica celeste. Tiene por objeto interpretar los movimientos de la astronomía de posición, en el ámbito de la parte de la física conocida como mecánica, generalmente la newtoniana (Ley de la Gravitación Universal de Isaac Newton). Estudia el movimiento de los planetas alrededor del Sol, de sus satélites, el cálculo de las órbitas de cometas y asteroides. El estudio del movimiento de la Luna alrededor de la Tierra fue por su complejidad muy importante para el desarrollo de la ciencia. El movimiento extraño de Urano, causado por las perturbaciones de un planeta hasta entonces desconocido, permitió a Le Verrier y Adams descubrir sobre el papel al planeta Neptuno. El descubrimiento de una pequeña desviación en el avance del perihelio de Mercurio se atribuyó inicialmente a un planeta cercano al Sol hasta que Einstein la explicó con su Teoría de la Relatividad.
Astrofísica. Es una parte moderna de la astronomía que estudia los astros como cuerpos de la física estudiando su composición, estructura y evolución. Sólo fue posible su inicio en el siglo XIX cuando gracias a los espectros se pudo averiguar la composición física de las estrellas. Las ramas de la física implicadas en el estudio son la física nuclear (generación de la energía en el interior de las estrellas) y la física de la relatividad. A densidades elevadas el plasma se transforma en materia degenerada; esto lleva a algunas de sus partículas a adquirir altas velocidades que deberán estar limitadas por la velocidad de la luz, lo cual afectará a sus condiciones de degeneración. Asimismo, en las cercanías de los objetos muy masivos, estrellas de neutrones o agujeros negros, la materia que cae se acelera a velocidades relativistas emitiendo radiación intensa y formando potentes chorros de materia.

Cosmología. Es la rama de la astronomía que estudia los orígenes, estructura, evolución y nacimiento del universo en su conjunto.
[
Astronomía extragaláctica: lente gravitacional. Esta imagen muestra varios objetos azules con forma de nillo, los cuales son imágenes múltiples de la misma galaxia, duplicados por el efecto de lente gravitacional del grupo de galaxias amarillas en el centro de la fotografía. La lente es producida por el campo gravitacional del grupo que curva la luz aumentando y distorsionando la imagen de objetos más distantes.
Astrometría. Estudio de la posición de los objetos en el cielo y su cambio de posición. Define el sistema de coordenadas utilizado y la cinemática de los objetos en nuestra galaxia.
Astrofísica. Estudio de la física del universo, incluyendo las propiedades de objetos astronómicos (luminosidad, densidad, temperatura, composición química).
Cosmología. Estudio del origen del universo y su evolución. El estudio de la cosmología es la máxima expresión de la astrofísica teórica.
Formación y evolución de las galaxias. Estudio de la formación de galaxias y su evolución.
Astronomía galáctica. Estudio de la estructura y componentes de nuestra galaxia y de otras.
Astronomía extragaláctica. Estudio de objetos fuera de la Vía Láctea.
Astronomía estelar. Estudio de las estrellas, su nacimiento, evolución y muerte.
Evolución estelar. Estudio de la evolución de las estrellas desde su formación hasta su muerte como un despojo estelar.
Formación estelar. Estudio de las condiciones y procesos que llevan a la formación de estrellas en el interior de nubes de gas.
Ciencias planetarias. Estudio de los planetas del Sistema Solar y de los planetas extrasolares.
Astrobiología. Estudio de la aparición y evolución de sistemas biológicos en el universo.
[editar]Otros campos de estudio
Arqueoastronomía
Astroquímica
Astrodinámica
Astronáutica
[editar]Campos de la astronomía por la parte del espectro utilizado
Atendiendo a la longitud de onda de la radiación electromagnética con la que se observa el cuerpo celeste la astronomía se divide en:
Astronomía óptica, cuando la observación utiliza exclusivamente la luz en las longitudes de onda que pueden ser detectadas por el ojo humano, o muy cerca de ellas (alrededor de 400-800 nm). Es la rama más antigua.
Radioastronomía. Para la observación utiliza radiación con longitudes de onda de mm a cm, similar a la usada en radiodifusión. La astronomía óptica y de radio puede realizarse usando observatorios terrestres porque la atmósfera es transparente en esas longitudes de onda.
Astronomía infrarroja. Utiliza detectores de luz infrarroja (longitudes de onda más largas que la correspondiente al rojo). La luz infrarroja es fácilmente absorbida por el vapor de agua, así que los observatorios de infrarrojos deben establecerse en lugares altos y secos.
Astronomía de alta energía. Incluye la astronomía de rayos X, astronomía de rayos gamma y astronomía ultravioleta, así como el estudio de los neutrinos y los rayos cósmicos. Las observaciones se pueden hacer únicamente desde globos aerostáticos u observatorios espaciales.

COSMOLOGÍA

La cosmología en rasgos generales estudia la historia del universo desde su nacimiento. Hay numerosos campos de estudio de esta rama de la astronomía. Varias investigaciones conforman la cosmología actual, con sus postulados, hipótesis e incógnitas.
La cosmología física comprende el estudio del origen, la evolución y el destino del Universo utilizando los modelos terrenos de la física. La cosmología física se desarrolló como ciencia durante la primera mitad del siglo XX como consecuencia de diversos acontecimientos y descubrimientos encadenados durante dicho período.
Principio cosmológico
Constante cosmológica
Formación y evolución de las estrellas
Artículos principales: Formación estelar, Formación y evolución de las galaxias y Evolución estelar


Astronomía estelar, Evolución estelar: La nebulosa de hormiga (Mz3). La expulsión de gas de una estrella moribunda en el centro muestra patrones simétricos diferentes de los patrones caóticos esperados de una explosión ordinaria.
Corrimiento al rojo
Fuerzas fundamentales
Aceleración de la expansión del Universo
Inestabilidad de Jeans
Interacción nuclear fuerte

ASTRONOMÍA

Estudio de la orientación por las estrellas


La Osa Mayor es una constelación tradicionalmente utilizada como punto de referencia celeste para la orientación tanto marítima como terrestre.


Representación virtual en 3D de la situación de las galaxias de nuestro grupo local en el espacio.
Artículo principal: Historia de la navegación astronómica
Para ubicarse en el cielo, se agruparon las estrellas que se ven desde la Tierra en constelaciones. Así, continuamente se desarrollan mapas (cilíndricos o cenitales) con su propia nomenclatura astronómica para localizar las estrellas conocidas y agregar los últimos descubrimientos.
Aparte de orientarse en la Tierra a través de las estrellas, la astronomía estudia el movimiento de los objetos en la esfera celeste, para ello se utilizan diversos sistemas de coordenadas astronómicas. Estos toman como referencia parejas de círculos máximos distintos midiendo así determinados ángulos respecto a estos planos fundamentales. Estos sistemas son principalmente:
Sistema altacimutal, u horizontal que toma como referencias el horizonte celeste y el meridiano del lugar.
Sistemas horario y ecuatorial, que tienen de referencia el ecuador celeste, pero el primer sistema adopta como segundo círculo de referencia el meridiano del lugar mientras que el segundo se refiere al círculo horario (círculo que pasa por los polos celestes).
Sistema eclíptico, que se utiliza normalmente para describir el movimiento de los planetas y calcular los eclipses; los círculos de referencia son la eclíptica y el círculo de longitud que pasa por los polos de la eclíptica y el punto γ.
Sistema galáctico, se utiliza en estadística estelar para describir movimientos y posiciones de cuerpos galácticos. Los círculos principales son la intersección del plano ecuatorial galáctico con la esfera celeste y el círculo máximo que pasa por los polos de la Vía Láctea y el ápice del Sol (punto de la esfera celeste donde se dirige el movimiento solar).
La astronomía de posición es la rama más antigua de esta ciencia. Describe el movimiento de los astros, planetas, satélites y fenómenos como los eclipses y tránsitos de los planetas por el disco del Sol. Para estudiar el movimiento de los planetas se introduce el movimiento medio diario que es lo que avanzaría en la órbita cada día suponiendo movimiento uniforme. La astronomía de posición también estudia el movimiento diurno y el movimiento anual del Sol. Son tareas fundamentales de la misma la determinación de la hora y para la navegación el cálculo de las coordenadas geográficas. Para la determinación del tiempo se usa el tiempo de efemérides ó también el tiempo solar medio que está relacionado con el tiempo local. El tiempo local en Greenwich se conoce como Tiempo Universal.
La distancia a la que están los astros de la Tierra en el de universo se mide en unidades astronómicas, años luz o pársecs. Conociendo el movimiento propio de las estrellas, es decir lo que se mueve cada siglo sobre la bóveda celeste se puede predecir la situación aproximada de las estrellas en el futuro y calcular su ubicación en el pasado viendo como evolucionan con el tiempo la forma de las constelaciones.


Con un pequeño telescopio pueden realizarse grandes observaciones. El campo amateur es amplio y cuenta con muchos seguidores.
[editar]Instrumentos de observación


Galileo Galilei observó gracias a su telescopio cuatro lunas del planeta Júpiter, un gran descubrimiento que chocaba diametralmente con los postulados tradicionalistas de la Iglesia Católica de la época.
Artículo principal: Observatorio astronómico
Para observar la bóveda celeste y las constelaciones más conocidas no hará falta ningún instrumento, para observar cometas o algunas nebulosas sólo serán necesarios unos prismáticos, los grandes planetas se ven a simple vista; pero para observar detalles de los discos de los planetas del sistema solar o sus satélites mayores bastará con un telescopio simple. Si se quiere observar con profundidad y exactitud determinadas características de los astros, se requieren instrumentos que necesitan de la precisión y tecnología de los últimos avances científicos.
[editar]Astronomía visible
Artículos principales: Astronomía visible y Telescopio
El telescopio fue el primer instrumento de observación del cielo. Aunque su invención se le atribuye a Hans Lippershey, el primero en utilizar este invento para la astronomía fue Galileo Galilei quien decidió construirse él mismo uno. Desde aquel momento, los avances en este instrumento han sido muy grandes como mejores lentes y sistemas avanzados de posicionamiento.
Actualmente, el telescopio más grande del mundo se llama Very Large Telescope y se encuentra en el observatorio Paranal, al norte de Chile. Consiste en cuatro telescopios ópticos reflectores que se conjugan para realizar observaciones de gran resolución.
[editar]Astronomía del espectro electromagnético o radioastronomía
Artículos principales: Radioastronomía y Radiotelescopio
Se han aplicado diversos conocimientos de la física, las matemáticas y de la química a la astronomía. Estos avances han permitido observar las estrellas con muy diversos métodos. La información es recibida principalmente de la detección y el análisis de la radiación electromagnética (luz, infrarrojos, ondas de radio), pero también se puede obtener información de los rayos cósmicos, neutrinos y meteoros.


El Very Large Array. Como muchos otros telescopios, éste es un array interferométrico formado por muchos radiotelescopios más pequeños.
Estos datos ofrecen información muy importante sobre los astros, su composición química, temperatura, velocidad en el espacio, movimiento propio, distancia desde la Tierra y pueden plantear hipótesis sobre su formación, desarrollo estelar y fin.
El análisis desde la Tierra de las radiaciones (infrarrojos, rayos x, rayos gamma, etc.) no sólo resulta obstaculizado por la absorción atmosférica, sino que el problema principal, vigente también en el vacío, consiste en distinguir la señal recogida del "ruido de fondo", es decir, de la enorme emisión infrarroja producida por la Tierra o por los propios instrumentos. Cualquier objeto que no se halle a 0 K (-273,15 °C) emite señales electromagnéticas y, por ello, todo lo que rodea a los instrumentos produce radiaciones de "fondo". Hasta los propios telescopios irradian señales. Realizar una termografía de un cuerpo celeste sin medir el calor al que se halla sometido el instrumento resulta muy difícil: además de utilizar película fotográfica especial, los instrumentos son sometidos a una refrigeración continua con helio o hidrógeno líquido.
La radioastronomía se basa en la observación por medio de los radiotelescopios, unos instrumentos con forma de antena que recogen y registran las ondas de radio o radiación electromagnética emitidas por los distintos objetos celestes.
Estas ondas de radio, al ser procesadas ofrecen un espectro analizable del objeto que las emite. La radioastronomía ha permitido un importante incremento del conocimiento astronómico, particularmente con el descubrimiento de muchas clases de nuevos objetos, incluyendo los púlsares (o magnétares), quásares, las denominadas galaxias activas, radiogalaxias y blázares. Esto es debido a que la radiación electromagnética permite "ver" cosas que no son posibles de detectar en las astronomía óptica. Tales objetos representan algunos de los procesos físicos más extremos y energéticos en el universo.
Este método de observación está en constante desarrollo ya que queda mucho por avanzar en esta tecnología.


Diferencia entre la luz visible e infrarroja en la Galaxia del Sombrero ó Messier 104.
[editar]Astronomía de infrarrojos
Artículos principales: Astronomía infrarroja y Espectroscopia infrarroja
Gran parte de la radiación astronómica procedente del espacio (la situada entre 1 y 1000μm) es absorbida en la atmósfera. Por esta razón, los mayores telescopios de radiación infrarroja se construyen en la cima de montañas muy elevadas, se instalan en aeroplanos especiales de cota elevada, en globos, o mejor aún, en satélites de la órbita terrestre.
[editar]Astronomía ultravioleta
Artículos principales: Astronomía ultravioleta y Espectroscopía ultravioleta-visible


Imagen que ofrece una observación ultravioleta de los anillos de Saturno. Esta reveladora imagen fue obtenida por la sonda Cassini-Huygens.
La astronomía ultravioleta basa su actividad en la detección y estudio de la radiación ultravioleta que emiten los cuerpos celestes. Este campo de estudio cubre todos los campos de la astronomía. Las observaciones realizadas mediante este método son muy precisas y han realizado avances significativos en cuanto al descubrimiento de la composición de la materia interestelar e intergaláctica, el de la periferia de las estrellas, la evolución en las interacciones de los sistemas de estrellas dobles y las propiedades físicas de los quásares y de otros sistemas estelares activos. En las observaciones realizadas con el satélite artificial Explorador Internacional Ultravioleta, los estudiosos descubrieron que la Vía Láctea está envuelta por un aura de gas con elevada temperatura. Este aparato midió asimismo el espectro ultravioleta de una supernova que nació en la Gran Nube de Magallanes en 1987. Este espectro fue usado por primera vez para observar a la estrella precursora de una supernova.


La Galaxia elíptica M87 emite señales electromagnéticas en todos los espectros conocidos.
[editar]Astronomía de rayos X
Artículos principales: Astronomía de rayos-X y Radiografía
La emisión de rayos x se cree que procede de fuentes que contienen materia a elevadísimas temperaturas, en general en objetos cuyos átomos o electrones tienen una gran energía. El descubrimiento de la primera fuente de rayos x procedente del espacio en 1962 se convirtió en una sorpresa. Esa fuente denominada Scorpio X-1 está situada en la constelación de Escorpio en dirección al centro de la Vía Láctea. Por este descubrimiento Riccardo Giacconi obtuvo el Premio Nobel de Física en 2002.
[editar]Astronomía de rayos gamma
Artículos principales: Astronomía de rayos gamma y Espectroscopía de rayos gamma


El observatorio espacial Swift está específicamente diseñado para percibir señales gamma del universo y sirve de herramienta para intentar clarificar los fenómenos observados.
Los rayos gamma son radiaciones emitidas por objetos celestes que se encuentran en un proceso energético extremadamente violento. Algunos astros despiden brotes de rayos gamma o también llamados BRGs. Se trata de los fenómenos físicos más luminosos del universo produciendo una gran cantidad de energía en haces breves de rayos que pueden durar desde unos segundos hasta unas pocas horas. La explicación de estos fenómenos es aún objeto de controversia.
Los fenómenos emisores de rayos gamma son frecuentemente explosiones de supernovas, su estudio también intenta clarificar el origen de la primera explosión del universo o big bang.
El Observatorio de Rayos Gamma Compton -ya inexistente- fue el segundo de los llamados grandes observatorios espaciales (detrás del telescopio espacial Hubble) y fue el primer observatorio a gran escala de estos fenómenos. Ha sido reemplazado recientemente por el satélite Fermi. El observatorio orbital INTEGRAL observa el cielo en el rango de los rayos gamma blandos o rayos X duros.
A energías por encima de unas decenas de GeV, los rayos gamma sólo se pueden observar desde el suelo usando los llamados telescopios Cherenkov como MAGIC. A estas energías el universo también puede estudiarse usando partículas distintas a los fotones, tales como los rayos cósmicos o los neutrinos. Es el campo conocido como Física de Astropartículas.
[editar]Astronomía Teórica

Los astrónomos teóricos utilizan una gran variedad de herramientas como modelos matemáticos analíticos y simulaciones numéricas por computadora. Cada uno tiene sus ventajas. Los modelos matemáticos analíticos de un proceso por lo general, son mejores porque llegan al corazón del problema y explican mejor lo que está sucediendo. Los modelos numéricos, pueden revelar la existencia de fenómenos y efectos que de otra manera no se verían.1 2
Los teóricos de la astronomía ponen su esfuerzo en crear modelos teóricos e imaginar las consecuencias observacionales de estos modelos. Esto ayuda a los observadores a buscar datos que puedan refutar un modelo o permitan elegir entre varios modelos alternativos o incluso contradictorios.
Los teóricos, también intentan generar o modificar modelos para conseguir nuevos datos. En el caso de una inconsistencia, la tendencia general es tratar de hacer modificaciones mínimas al modelo para que se corresponda con los datos. En algunos casos, una gran cantidad de datos inconsistentes a través del tiempo puede llevar al abandono total de un modelo.
Los temas estudiados por astrónomos teóricos incluyen: dinámica estelar y evolución estelar; formación de galaxias; origen de los rayos cósmicos; relatividad general y cosmología física, incluyendo teoría de cuerdas.
[editar]La mecánica celeste
Artículo principal: Mecánica celeste
La astromecánica o mecánica celeste tiene por objeto interpretar los movimientos de la astronomía de posición, en el ámbito de la parte de la física conocida como mecánica, generalmente la newtoniana (Ley de la Gravitación Universal de Isaac Newton). Estudia el movimiento de los planetas alrededor del Sol, de sus satélites, el cálculo de las órbitas de cometas y asteroides. El estudio del movimiento de la Luna alrededor de la Tierra fue por su complejidad muy importante para el desarrollo de la ciencia. El movimiento extraño de Urano, causado por las perturbaciones de un planeta hasta entonces desconocido, permitió a Le Verrier y Adams descubrir sobre el papel al planeta Neptuno. El descubrimiento de una pequeña desviación en el avance del perihelio de Mercurio se atribuyó inicialmente a un planeta cercano al Sol hasta que Einstein la explicó con su Teoría de la Relatividad.
[editar]Astrofísica
Artículo principal: Astrofísica
La astrofísica es una parte moderna de la astronomía que estudia los astros como cuerpos de la física estudiando su composición, estructura y evolución. Sólo fue posible su inicio en el siglo XIX cuando gracias a los espectros se pudo averiguar la composición física de las estrellas. Las ramas de la física implicadas en el estudio son la física nuclear (generación de la energía en el interior de las estrellas) y la física relativística. A densidades elevadas el plasma se transforma en materia degenerada; esto lleva a algunas de sus partículas a adquirir altas velocidades que deberán estar limitadas por la velocidad de la luz, lo cual afectará a sus condiciones de degeneración. Asimismo, en las cercanías de los objetos muy masivos, estrellas de neutrones o agujeros negros, la materia que cae se acelera a velocidades relativistas emitiendo radiación intensa y formando potentes chorros de materia.
[editar]Estudio de los objetos celestes
[editar]El sistema solar desde la astronomía
Artículos principales: El sistema solar y Formación y evolución del Sistema Solar
Véase también: Anexo:Cronología del descubrimiento de los planetas del Sistema Solar y sus satélites naturales


Posición figurada de los planetas y el sol en el sistema solar, separados por planetas interiores y exteriores.
El estudio del Universo o Cosmos y más concretamente del Sistema Solar ha planteado una serie de interrogantes y cuestiones, por ejemplo cómo y cuándo se formó el sistema, por qué y cuándo desaparecerá el Sol, por qué hay diferencias físicas entre los planetas, etc.
Es difícil precisar el origen del Sistema Solar. Los científicos creen que puede situarse hace unos 4.600 millones de años, cuando una inmensa nube de gas y polvo empezó a contraerse probablemente, debido a la explosión de una supernova cercana. Alcanzada una densidad mínima ya se autocontrajo a causa de la fuerza de la gravedad y comenzó a girar a gran velocidad, por conservación de su momento cinético, al igual que cuando una patinadora repliega los brazos sobre si misma gira más rápido. La mayor parte de la materia se acumuló en el centro. La presión era tan elevada que los átomos comenzaron a fusionarse, liberando energía y formando una estrella. También había muchas colisiones. Millones de objetos se acercaban y se unían o chocaban con violencia y se partían en trozos. Algunos cuerpos pequeños (planetesimales) iban aumentando su masa mediante colisiones y al crecer, aumentaban su gravedad y recogían más materiales con el paso del tiempo (acreción). Los encuentros constructivos predominaron y, en sólo 100 millones de años, adquirió un aspecto semejante al actual. Después cada cuerpo continuó su propia evolución.
[editar]Astronomía del Sol
Artículo principal: Sol
El Sol es la estrella que, por el efecto gravitacional de su masa, domina el sistema planetario que incluye a la Tierra. Es el elemento más importante en nuestro sistema y el objeto más grande, que contiene aproximadamente el 98% de la masa total del sistema solar. Mediante la radiación de su energía electromagnética, aporta directa o indirectamente toda la energía que mantiene la vida en la Tierra. Saliendo del Sol, y esparciéndose por todo el Sistema solar en forma de espiral tenemos al conocido como viento solar que es un flujo de partículas, fundamentalmente protones y neutrones. La interacción de estas partículas con los polos magnéticos de los planetas y con la atmósfera genera las auroras polares boreales o australes. Todas estas partículas y radiaciones son absorbidas por la atmósfera. La ausencia de auroras durante el Mínimo de Maunder se achaca a la falta de actividad del Sol.


Uno de los fenómenos más desconcertantes e impactantes que podemos observar en nuestro planeta, son las auroras boreales. Fueron misterio hasta hace poco pero recientemente han sido explicadas, gracias al estudio de la astronomía del Sol.
A causa de su proximidad a la Tierra y como es una estrella típica, el Sol es un recurso extraordinario para el estudio de los fenómenos estelares. No se ha estudiado ninguna otra estrella con tanto detalle. La estrella más cercana al Sol, Próxima Centauri, está a 4,2 años luz.
El Sol (todo el Sistema Solar) gira alrededor del centro de la Vía Láctea, nuestra galaxia. Da una vuelta cada 225 millones de años. Ahora se mueve hacia la constelación de Hércules a 19 km/s. Actualmente el Sol se estudia desde satélites, como el Observatorio Heliosférico y Solar (SOHO), dotados de instrumentos que permiten apreciar aspectos que, hasta ahora, no se habían podido estudiar. Además de la observación con telescopios convencionales, se utilizan: el coronógrafo, que analiza la corona solar, el telescopio ultravioleta extremo, capaz de detectar el campo magnético, y los radiotelescopios, que detectan diversos tipos de radiación que resultan imperceptibles para el ojo humano.
El sol es una de las 200.000 millones a 400.000 millones de estrellas de nuestra galaxia. Es una enana amarilla corriente, que esta a 8,5 minutos-luz de la tierra y es de media edad. Con 1,4 millones de kilómetros de diámetro, contiene el 99,8 por ciento de la masa de nuestro sistema solar, la cual se consume a un ritmo de 5 millones de toneladas por segundo, produciendo 383.000 millones de megavatios de energía. Además el sol es similar a una bomba de hidrógeno por la colosal fusión nuclear de hidrógeno que mantiene en su núcleo y la gran cantidad de energía que emite cada segundo. El equilibrio que mantiene su tamaño es la contraposición entre su gravedad y la expulsión continua de energía. También es una estrella de tercera generación. El protio, el isótopo de hidrógeno más abundante de la naturaleza, con su núcleo solamente compuesto por un protón, es además el combustible que alimenta las fusiones nucleares en el corazón de las estrellas gracias a cuya ingente energía emitida las estrellas brillan incluyendo a nuestro sol.
La parte visible del Sol está a 6.000 °C y la corona, más alejada, a 2.000.000 °C. Estudiando al Sol en el ultravioleta se llegó a la conclusión de que el calentamiento de la corona se debe a la gran actividad magnética del Sol. Los límites del Sistema Solar vienen dados por el fin de su influencia o heliosfera, delimitada por un área denominada Frente de choque de terminación o Heliopausa.
[editar]Historia de la observación del Sol
Artículo principal: Formación y evolución del Sistema Solar
El estudio del Sol se inicia con Galileo Galilei de quien se dice que se quedó ciego por observar los eclipses. Hace más de cien años se descubre la espectroscopia que permite descomponer la luz en sus longitudes de onda, gracias a esto se puede conocer la composición química, densidad, temperatura, situación los gases de su superficie, etc. En los años 50 ya se conocía la física básica del Sol, es decir, su composición gaseosa, la temperatura elevada de la corona, la importancia de los campos magnéticos en la actividad solar y su ciclo magnético de 22 años.


Imagen que ofrece una fotografía del sol en rayos x.
Las primeras mediciones de la radiación solar se hicieron desde globos hace un siglo y después fueron aviones y dirigibles para mejorar las mediciones con aparatos radioastronómicos. En 1914, C. Abbot envió un globo para medir la constante solar (cantidad de radiación proveniente del sol por centímetro cuadrado por segundo). En 1946 el cohete V-2 militar ascendió a 55 km con un espectrógrafo solar a bordo; este fotografió al sol en longitudes de onda ultravioletas. En 1948 (diez años antes de la fundación de la NASA) ya se fotografió al Sol en rayos X. Algunos cohetes fotografiaron ráfagas solares en 1956 en un pico de actividad solar.
En 1960 se lanza la primera sonda solar denominada Solrad. Esta sonda monitoreó al sol en rayos x y ultravioletas, en una longitud de onda muy interesante que muestra las emisiones de hidrógeno; este rango de longitud de onda se conoce como línea Lyman α. Posteriormente se lanzaron ocho observatorios solares denominados OSO. El OSO 1 fue lanzado en 1962. Los OSO apuntaron constantemente hacia el Sol durante 17 años y con ellos se experimentaron nuevas técnicas de transmisión fotográfica a la tierra.


Imagen en la que pueden apreciarse las manchas solares.
El mayor observatorio solar ha sido el Skylab. Estuvo en órbita durante nueve meses en 1973 y principios de 1974. Observó al Sol en rayos g, X, ultravioleta y visible, y obtuvo la mayor cantidad de datos (y los mejor organizados) que hayamos logrado jamás para un objeto celeste. En 1974 y 1976 las sondas Helios A y B se acercaron mucho al Sol para medir las condiciones del viento solar. No llevaron cámaras.
En 1980 se lanzó la sonda Solar Max, para estudiar al Sol en un pico de actividad. Tuvo una avería y los astronautas del Columbia realizaron una complicada reparación.
[editar]Manchas solares
George Ellery Hale descubrió en 1908 que las manchas solares (áreas más frías de la fotosfera) presentan campos magnéticos fuertes. Estas manchas solares se suelen dar en parejas, con las dos manchas con campos magnéticos que señalan sentidos opuestos. El ciclo de las manchas solares, en el que la cantidad de manchas solares varía de menos a más y vuelve a disminuir al cabo de unos 11 años, se conoce desde principios del siglo XVIII. Sin embargo, el complejo modelo magnético asociado con el ciclo solar sólo se comprobó tras el descubrimiento del campo magnético del Sol.
[editar]El fin del Sol: ¿el fin de la vida humana?
En el núcleo del Sol hay hidrógeno suficiente para durar otros 4.500 millones de años, es decir, se calcula que está en plenitud, en la mitad de su vida. Tal como se desprende de la observación de otros astros parecidos, cuando se gaste este hidrógeno combustible, el Sol cambiará: según se vayan expandiendo las capas exteriores hasta el tamaño actual de la órbita de la Tierra, el Sol se convertirá en una gigante roja, algo más fría que hoy pero 10.000 veces más brillante a causa de su enorme tamaño. Sin embargo, la Tierra no se consumirá porque se moverá en espiral hacia afuera, como consecuencia de la pérdida de masa del Sol. El Sol seguirá siendo una gigante roja, con reacciones nucleares de combustión de helio en el centro, durante sólo 500 millones de años. No tiene suficiente masa para atravesar sucesivos ciclos de combustión nuclear o un cataclismo en forma de explosión, como les ocurre a algunas estrellas. Después de la etapa de gigante roja, se encogerá hasta ser una enana blanca, aproximadamente del tamaño de la Tierra, y se enfriará poco a poco durante varios millones de años.
[editar]Astronomía de los planetas, satélites y otros objetos del sistema solar


Astronomía lunar: el cráter mayor es el Dédalo, fotografiado por la tripulación del Apollo 11 mientras orbitaba la Luna en 1969. Ubicado cerca del centro de la cara oculta de la luna, tiene un diámetro de alrededor de 93 kilómetros.


Vista que presentó el cometa McNaught a su paso próximo a la Tierra en enero de 2007.
Una de las cosas más fáciles de observar desde la Tierra y con un telescopio simple son los objetos de nuestro propio Sistema Solar y sus fenómenos, que están muy cerca en comparación de estrellas y galaxias. De ahí que el aficionado siempre tenga a estos objetos en sus preferencias de observación.
Los eclipses y los tránsitos astronómicos han ayudado a medir las dimensiones del sistema solar.
Dependiendo de la distancia de un planeta al Sol, tomando la Tierra como observatorio de base, los planetas se dividen en dos grandes grupos: planetas interiores y planetas exteriores. Entre estos planetas encontramos que cada uno presenta condiciones singulares: la curiosa geología de Mercurio, los movimientos retrógrados de algunos como Venus, la vida en la Tierra, la curiosa red de antiguos ríos de Marte, el gran tamaño y los vientos de la atmósfera de Júpiter, los anillos de Saturno, el eje de rotación inclinado de Urano o la extraña atmósfera de Neptuno, etc. Algunos de estos planetas cuentan con satélites que también tienen singularidades; de entre estos, el más estudiado ha sido la Luna, el único satélite de la Tierra, dada su cercanía y simplicidad de observación, conformándose una historia de la observación lunar. En la Luna hallamos claramente el llamado bombardeo intenso tardío, que fue común a casi todos los planetas y satélites, creando en algunos de ellos abruptas superficies salpicadas de impactos.
Los llamados planetas terrestres presentan similitudes con la Tierra, aumentando su habitabilidad planetaria, es decir, su potencial posibilidad habitable para los seres vivos. Así se delimita la ecósfera, un área del sistema solar que es propicia para la vida.
Más lejos de Neptuno encontramos otros planetoides como por ejemplo el hasta hace poco considerado planeta Plutón, la morfología y naturaleza de este planeta menor llevó a los astrónomos a cambiarlo de categoría en la llamada redefinición de planeta de 2006 aunque posea un satélite compañero, Caronte. Estos planetas enanos, por su tamaño no pueden ser considerados planetas como tales, pero presentan similitudes con éstos, siendo más grandes que los asteroides. Algunos son: Eris, Sedna o 1998 WW31, este último singularmente binario y de los denominados cubewanos. A todo este compendio de planetoides se les denomina coloquialmente objetos o planetas transneptunianos. También existen hipótesis sobre un planeta X que vendría a explicar algunas incógnitas, como la ley de Titius-Bode o la concentración de objetos celestes en el acantilado de Kuiper.
Entre los planetas Marte y Júpiter encontramos una concentración inusual de asteroides conformando una órbita alrededor del sol denominada cinturón de asteroides.
En órbitas dispares y heteromorfas se encuentran los cometas, que subliman su materia al contacto con el viento solar, formando colas de apariencia luminosa; se estudiaron en sus efímeros pasos por las cercanías de la Tierra los cometas McNaught o el Halley. Mención especial tienen los cometas Shoemaker-Levy 9 que terminó estrellándose contra Júpiter o el 109P/Swift-Tuttle, cuyos restos provocan las lluvias de estrellas conocidas como Perseidas o lágrimas de San Lorenzo. Estos cuerpos celestes se concentran en lugares como el cinturón de Kuiper, el denominado disco disperso o la nube de Oort y se les llama en general cuerpos menores del Sistema Solar.
En el Sistema Solar también existe una amplísima red de partículas, meteoroides de diverso tamaño y naturaleza, y polvo que en mayor o menor medida se hallan sometidos al influjo del efecto Poynting-Robertson que los hace derivar irremediablemente hacia el Sol.
Astronomía de los fenómenos gravitatorios
Artículos principales: La Gravedad y Agujero negro
El campo gravitatorio del Sol es el responsable de que los planetas giren en torno a este. El influjo de los campos gravitatorios de las estrellas dentro de una galaxia se denomina marea galáctica.
Tal como demostró Einstein en su obra Relatividad general, la gravedad deforma la geometría del espacio-tiempo, es decir, la masa gravitacional de los cuerpos celestes deforma el espacio, que se curva. Este efecto provoca distorsiones en las observaciones del cielo por efecto de los campos gravitatorios, haciendo que se observen juntas galaxias que están muy lejos unas de otras. Esto es debido a que existe materia que no podemos ver que altera la gravedad. A estas masas se las denominó materia oscura.
Encontrar materia oscura no es fácil ya que no brilla ni refleja la luz, así que los astrónomos se apoyan en la gravedad, que puede curvar la luz de estrellas distantes cuando hay suficiente masa presente, muy parecido a cómo una lente distorsiona una imagen tras ella, de ahí el término lente gravitacional o anillo de Einstein. Gracias a las leyes de la física, conocer cuánta luz se curva dice a los astrónomos cuánta masa hay. Cartografiando las huellas de la gravedad, se pueden crear imágenes de cómo está distribuida la materia oscura en un determinado lugar del espacio. A veces se presentan anomalías gravitatorias que impiden realizar estos estudios con exactitud, como las ondas gravitacionales provocadas por objetos masivos muy acelerados.
Los agujeros negros son singularidades de alta concentración de masa que curva el espacio, cuando éstas acumulaciones masivas son producidas por estrellas le les denomina agujero negro estelar; esta curva espacial es tan pronunciada que todo lo que se acerca a su perímetro es absorbido por este, incluso la luz (de ahí el nombre). El agujero negro Q0906+6930 es uno de los más masivos de los observados. Varios modelos teóricos, como por ejemplo el agujero negro de Schwarzschild, aportan soluciones a los planteamientos de Einstein.
[editar]Astronomía cercana y lejana
Artículos principales: Astronomía galáctica y Astronomía extragaláctica


Un caso particular lo hallamos en Andrómeda que dado su grandísimo tamaño y luminiscencia es posible apreciarla luminosa a simple vista. Llega a nosotros con una asombrosa nitidez a pesar de la enorme distancia que nos separa de ella: dos millones y medio de años luz; es decir, si sucede cualquier cosa en dicha galaxia, tardaremos dos millones y medio de años en percibirlo, o dicho de otro modo, lo que vemos ahora de ella es lo que sucedió hace dos millones quinientos mil años.
La astronomía cercana abarca la exploración de nuestra galaxia, por tanto comprende también la exploración del Sistema Solar. No obstante, el estudio de las estrellas determina si éstas pertenecen o no a nuestra galaxia. El estudio de su clasificación estelar determinará, entre otras variables, si el objeto celeste estudiado es "cercano" o "lejano".
Tal como hemos visto hasta ahora, en el Sistema Solar encontramos diversos objetos (v. El Sistema Solar desde la astronomía) y nuestro sistema solar forma parte de una galaxia que es la Vía Láctea. Nuestra galaxia se compone de miles de millones de objetos celestes que giran en espiral desde un centro muy denso donde se mezclan varios tipos de estrellas, otros sistemas solares, nubes interestelares o nebulosas, etc. y encontramos objetos como IK Pegasi, Tau Ceti o Gliese 581 que son soles cada uno con determinadas propiedades diferentes.
La estrella más cercana a nuestro sistema solar es Próxima Centauri que se encuentra a 4,2 años luz. Esto significa que la luz procedente de dicha estrella tarda 4,2 años en llegar a ser percibida en La Tierra desde que es emitida.
Estos soles o estrellas forman parte de numerosas constelaciones que son formadas por estrellas fijas aunque la diferencia de sus velocidades de deriva dentro de nuestra galaxia les haga variar sus posiciones levemente a lo largo del tiempo, por ejemplo la Estrella Polar. Estas estrellas fijas pueden ser o no de nuestra galaxia.
La astronomía lejana comprende el estudio de los objetos visibles fuera de nuestra galaxia, donde encontramos otras galaxias que contienen, como la nuestra, miles de millones de estrellas a su vez. Las galaxias pueden no ser visibles dependiendo de si su centro de gravedad absorbe la materia (v. agujero negro), son demasiado pequeñas o simplemente son galaxias oscuras cuya materia no tiene luminosidad. Las galaxias a su vez derivan alejándose unas de otras cada vez más, lo que apoya la hipótesis de que nuestro universo actualmente se expande.
Las galaxias más cercanas a la nuestra (aproximadamente 30) son denominadas el grupo local. Entre estas galaxias se encuentran algunas muy grandes como Andrómeda, nuestra Vía Láctea y la Galaxia del Triángulo.
Cada galaxia tiene propiedades diferentes, predomino de diferentes elementos químicos y formas (espirales, elípticas, irregulares, anulares, lenticulares, en forma de remolino, o incluso con forma espiral barrada entre otras más sofisticadas como cigarros, girasoles, sombreros, etc.).

ASTRONOMÍA

La astronomía es la ciencia que se ocupa del estudio de los cuerpos celestes del Universo, incluidos los planetas y sus satélites, los cometas y meteoroides, las estrellas y la materia interestelar, los sistemas de estrellas llamados galaxias y los cúmulos de galaxias; por lo que estudia sus movimientos y los fenómenos ligados a ellos.

HISTORIA DE LA ASTRONOMÍA

En casi todas las religiones antiguas existía la cosmogonía, que intentaba explicar el origen del universo, ligando éste a los elementos mitológicos. La historia de la astronomía es tan antigua como la historia del ser humano. Antiguamente se ocupaba, únicamente, de la observación y predicciones de los movimientos de los objetos visibles a simple vista, quedando separada durante mucho tiempo de la Física. En Sajonia-Anhalt, Alemania, se encuentra el famoso Disco celeste de Nebra, que es la representación más antigua conocida de la bóveda celeste. Quizá fueron los astrónomos chinos quienes dividieron, por primera vez, el cielo en constelaciones. En Europa, las doce constelaciones que marcan el movimiento anual del Sol fueron denominadas constelaciones zodiacales. Los antiguos griegos hicieron importantes contribuciones a la astronomía, entre ellas, la definición de magnitud. La astronomía precolombina poseía calendarios muy exactos y parece ser que las pirámides de Egipto fueron construidas sobre patrones astronómicos muy precisos.
La cultura griega clásica primigenia postulaba que la Tierra era plana. En el modelo aristotélico lo celestial pertenecía a la perfección -"cuerpos celestes perfectamente esféricos moviéndose en órbitas circulares perfectas"-, mientras que lo terrestre era imperfecto; estos dos reinos se consideraban como opuestos. Aristóteles defendía la teoría geocéntrica para desarrollar sus postulados. Fue probablemente Eratóstenes quien diseñara la esfera armilar que es un astrolabio para mostrar el movimiento aparente de las estrellas alrededor de la tierra.


Esfera armilar.
La astronomía observacional estuvo casi totalmente estancada en Europa durante la Edad Media, a excepción de algunas aportaciones como la de Alfonso X el Sabio con sus tablas alfonsíes, o los tratados de Alcabitius, pero floreció en el mundo con el Imperio persa y la cultura árabe. Al final del siglo X, un gran observatorio fue construido cerca de Teherán (Irán), por el astrónomo persa Al-Khujandi, quien observó una serie de pasos meridianos del Sol, lo que le permitió calcular la oblicuidad de la eclíptica. También en Persia, Omar Khayyam elaboró la reforma del calendario que es más preciso que el calendario juliano acercándose al Calendario Gregoriano. A finales del siglo IX, el astrónomo persa Al-Farghani escribió ampliamente acerca del movimiento de los cuerpos celestes. Su trabajo fue traducido al latín en el siglo XII. Abraham Zacuto fue el responsable en el siglo XV de adaptar las teorías astronómicas conocidas hasta el momento para aplicarlas a la navegación de la marina portuguesa. Ésta aplicación permitió a Portugal ser la puntera en el mundo de los descubrimientos de nuevas tierras fuera de Europa.

Vista parcial de un monumento dedicado a Copérnico en Varsovia.
Durante siglos, la visión geocéntrica de que el Sol y otros planetas giraban alrededor de la Tierra no se cuestionó. Esta visión era lo que para nuestros sentidos se observaba. En el Renacimiento, Nicolás Copérnico propuso el modelo heliocéntrico del Sistema Solar. Su trabajo De Revolutionibus Orbium Coelestium fue defendido, divulgado y corregido por Galileo Galilei y Johannes Kepler, autor de Harmonices Mundi, en el cual se desarrolla por primera vez la tercera ley del movimiento planetario.
Galileo añadió la novedad del uso del telescopio para mejorar sus observaciones. La disponibilidad de datos observacionales precisos llevó a indagar en teorías que explicasen el comportamiento observado (véase su obra Sidereus Nuncius). Al principio sólo se obtuvieron reglas ad-hoc, cómo las leyes del movimiento planetario de Kepler, descubiertas a principios del siglo XVII. Fue Isaac Newton quien extendió hacia los cuerpos celestes las teorías de la gravedad terrestre y conformando la Ley de la gravitación universal, inventando así la mecánica celeste, con lo que explicó el movimiento de los planetas y consiguiendo unir el vacío entre las leyes de Kepler y la dinámica de Galileo. Esto también supuso la primera unificación de la astronomía y la física (véase Astrofísica).
Tras la publicación de los Principios Matemáticos de Isaac Newton (que también desarrolló el telescopio reflector), se transformó la navegación marítima. A partir de 1670 aproximadamente, utilizando instrumentos modernos de latitud y los mejores relojes disponibles se ubicó cada lugar de la Tierra en un planisferio o mapa, calculando para ello su latitud y su longitud. La determinación de la latitud fue fácil pero la determinación de la longitud fue mucho más delicada. Los requerimientos de la navegación supusieron un empuje para el desarrollo progresivo de observaciones astronómicas e instrumentos más precisos, constituyendo una base de datos creciente para los científicos.


Ilustración de la teoría del "Big Bang" o primera gran explosión y de la evolución esquemática del universo desde entonces.
A finales del siglo XIX se descubrió que, al descomponer la luz del Sol, se podían observar multitud de líneas de espectro (regiones en las que había poca o ninguna luz). Experimentos con gases calientes mostraron que las mismas líneas podían ser observadas en el espectro de los gases, líneas específicas correspondientes a diferentes elementos químicos. De esta manera se demostró que los elementos químicos en el Sol (mayoritariamente hidrógeno) podían encontrarse igualmente en la Tierra. De hecho, el helio fue descubierto primero en el espectro del Sol y sólo más tarde se encontró en la Tierra, de ahí su nombre.
Se descubrió que las estrellas eran objetos muy lejanos y con el espectroscopio se demostró que eran similares al Sol, pero con una amplia gama de temperaturas, masas y tamaños. La existencia de la Vía Láctea como un grupo separado de estrellas no se demostró sino hasta el siglo XX, junto con la existencia de galaxias externas y, poco después, la expansión del universo, observada en el efecto del corrimiento al rojo. La astronomía moderna también ha descubierto una variedad de objetos exóticos como los quásares, púlsares, radiogalaxias, agujeros negros, estrellas de neutrones, y ha utilizado estas observaciones para desarrollar teorías físicas que describen estos objetos. La cosmología hizo grandes avances durante el siglo XX, con el modelo del Big Bang fuertemente apoyado por la evidencia proporcionada por la astronomía y la física, como la radiación de fondo de microondas, la Ley de Hubble y la abundancia cosmológica de los elementos químicos.
Durante el siglo XX, la espectrometría avanzó, en particular como resultado del nacimiento de la física cuántica, necesaria para comprender las observaciones astronómicas y experimentales.

viernes, 18 de noviembre de 2011

LEY GRAVITACIONAL

En la caída de los cuerpos en arco, según la primera ley de Newton, debe existir una fuerza diferente de cero, ya que sino el cuerpo seguiría una trayectoria rectilínea. Esta fuerza se ha dado a llamar gravedad. Su dirección está en la linea que une los centros de masas de cada cuerpo, y su sentido siempre es atractivo. Newton propuso una pequeña pero revolucionaria idea: que la fuerza que actúa en la caída de los cuerpos en la tierra, y la que crea las órbitas elípticas de los planetas, tienen el mismo origen. Supongamos que estamos en la cima de una gran montaña y que lanzamos un proyectil de forma horizontal. Éste seguirá una trayectoria curva hacia el suelo. Si lanzamos otro proyectil más largo, la curva que describirá será más amplia. Y así sucesivamente, hasta que lancemos el proyectil tan rápidamente que, debido a la curvatura de la tierra, no llegue a chocar contra el suelo y vuelva a nosotros por detrás tras haber dado la vuelta al mundo (hoy en día, la trayectoria de los satélites artificiales se pueden explicar de esta forma). En resumen, el movimiento del proyectil seria una curva cerrada al rededor de la tierra, muy similar a la que describen los planetas en rededor del sol.
Tan solo resta, pues, describir las condiciones en que se produce la atracción gravitatoria en el marco de la teoría de Newton. Según el teorema de Gauss, todos los cuerpos con simetría esférica (la mayoría) se atraen unos a otros como si toda su masa estuviera concentrada en el centro. Además, por el tercer principio de Newton, el de acción y reacción, la atracción debe ser mutua.

Siendo la gravitación una propiedad de la masa, es lógico pensar que la atracción crecerá proporcionalmente con la masa de ambos cuerpos involucrados, es decir, la fuerza gravitatoria debe ser proporcional al producto de las masas de los dos cuerpos.

Para explicar la proporcionalidad inversa con el cuadrado de la distancia. Podemos imaginar que la gravedad se expande en todas direcciones e el espacio de igual forma. Por tanto, podemos considerar que la fuerza se distribuye uniformemente por la superficie de una esfera de radio . La intensidad de la fuerza sera mayor cuanto menor sea la superficie de dicha esfera, ya que al suponer difusión uniforme la fuerza sera inversamente proporcional a la superficie. Dado que la superficie de una esfera se escribe de la forma , que crece de forma proporcional al cuadrado de la distancia, la fuerza decrecerá de forma inversamente proporcional a .

Así pues, siguiendo estos razonamientos, u otros equivalentes, Newton llegó a establecer que la fuerza debida a la gravedad entre dos masas, de valores y , separadas una distancia cumple la ecuación,donde el signo indica proporcionalidad. Podemos transformar la proporcionalidad a una igualdad introduciendo la constante de la gravitación universal, G, de la forma,

De hecho, el valor de la constante de la gravitación universal no se supo hasta más de medio siglo después de la muerte de Newton. El primero en medirlo fue el excéntrico físico británico Henry Cavendish (1731-1810), que obtuvo el valor

APORTACIONES DE NEWTON

A continuación mostramos una lista de los principales descubrimientos e inventos que Newton aportó a la historia de la ciencia. Algunos de ellos, los marcados con un asterisco, serán ampliados en apartados posteriores.
Fuerza centrípeta: Del latín hacia el centro, es la fuerza resultante que causa de todo movimiento circular, dirigida hacia el centro y con una magnitud igual a , siendo el radio de la circunferencia instantánea que describe la trayectoria. Esta ley, aplicada al movimiento de la luna, pudo ser la inspiración a la ley del cuadrado de la distancia de la gravitación universal.
Descomposición de la luz en colores:* Explicó el fenómeno mediante una teoría corpuscular de a descomposición de la luz blanca en los diferentes colores del arco iris en pasar por prismas transparentes.

Gravitación universal:* Cuantificó y describió la atracción de los cuerpos por el simple hecho de tener masa.

Leyes de Kepler: Las demostró matemáticamente a partir de su teoría de la gravitación universal. Las leyes de Kepler sobre las órbitas de los planetas afirman que: 1.- las órbitas son elípticas, con el sol en un foco de la misma; 2.- el radio vector que une el planeta con el sol barre áreas iguales en tiempos iguales; 3.- el cubo del semieje mayor de la elipse orbital de cada planeta es proporcional al cuadrado del período que tarda el planeta.

Hipótesis corpuscular de la luz: Intentó explicar diversos aspectos de la propagación de la luz suponiendo que estaba formada por pequeños proyectiles, corpúsculos. Ésta fue la teoría dominante hasta los experimentos de doble rendija de Young.

Mecánica newtoniana:* La mecánica es l parte de la física que se encarga de estudiar el movimiento de los cuerpos y sus causas. La formulación newtoniana es la más sencilla y práctica en la mayoría de situaciones en que no intervienen correcciones relativistas y cuánticas.

Óptica: Hizo diferentes adelantos en óptica, entre los que destaca el telescopio de reflexión. Probablemente el «Óptica» sea el segundo libro en importancia que publicó a lo largo de su vida.

Leyes del movimiento:* Las tres leyes que fundamentan la mecánica de Newton fueron publicadas en su libro más importante, los «Principia».

3.2 Mecánica

La mecánica física (estudio del movimiento de la materia en el espacio, y de sus causas) tiene millones de años de antigüedad, aunque los adelantos más importantes no se produjeron hasta a época de Newton.
El concepto del movimiento anterior a Newton, procedente de los antiguos griegos, dependía de la creencia sobre que la tierra era el centro inamovible y fijo del universo. Los objetos tendían a situarse en su nivel natural: tierra, agua, aire y fuego.

Igualmente, el desarrollo de la mecánica newtoniana tiende a comprender la definición y el análisis del movimiento, teniendo en cuenta que las deducciones han de ser aplicadas también en la astronomía para la descripción del movimiento de planetas y astros. Ésto, por primera vez, unifica la física de lo terrestre y lo celestial.

Newton descompuso el movimiento de los cuerpos en dos contribuciones: el movimiento natural y el artificial. El movimiento natural es aquél causado por la gravedad, que tiende a hacer que los objetos se acerquen mutuamente. El movimiento artificial es aquél que está causado por la aplicación de otras fuerzas en el presente o en instantes pasados. El resultado es una línea curvada que puede calcularse a partir de la aplicación de las leyes de la mecánica de Newton.

Newton demostró empíricamente la hipótesi de Galileo sobre la caída de cuerpos en un tubo de vacío, en que la caída de los mismos (el movimiento natural de la materia) es independiente de la masa.

3.3 Teoría de la luzNewton realizó el conocido experimento de doble refracción mediante prismas de vidrio transparente con caras no paralelas. En una primera etapa, el experimento se realiza con tan solo un prisma. Un haz de luz blanca que entra a un cuarto oscuro traviesa un trozo de cristal con caras planas no paralelas y sufre una doble refracción al entrar y salir del mismo. La luz se recoge con una pantalla. El resultado que se obtiene es un haz que contiene todos los colores naturales separados: el rojo, naranja, amarillo, verde, azul, añil y violeta.
Newton no creía en las afirmaciones de sus coetáneos sobre este fenómeno, que interpretaban que el color se formaba en el prisma, sino que supuso que la luz blanca era una mezcla de haces de los siete colores puros. Cada uno de estos haces posee un grado propio y diferente de refracción en el vidrio. Esta hipótesis también explica la formación del propio arco iris, ya que la luz que se refracta en las gotas de lluvia puede separarse de una forma parecida a la que hemos observado en la figura 1. Para intentar demostrar esta hipótesis, Newton realizó dos experimentos más.

El primer experimento consiste en añadir un segundo prisma, invertido respecto al primero, de forma que el haz de luz se vuelve a reunir para formar de nuevo un haz blanco, El segundo experimento es el disco de Newton, una ruleta que esta dividida en siete sectores, cada cual pintado con uno de los colores del arco iris. Al hacerlo girar a gran velocidad, la apariencia del disco es blanca.

Posteriormente, Newton quiso encontrar la explicación a la aparición de colores en los diferentes objetos cuando son iluminados por luz blanca. Cada substancia, argumentaba, posee una capacidad selectiva de absorción de cada color diferente. La parte no absorbida de la luz blanca es la única que llega a nuestros ojos, que la interpretan como si fuera una única luz con el color resultante de la combinación de las diferentes contribuciones de cada color natural.

Newton intentó demostrar esta explicación mediante un dispositivo experimental del tipo de la figura 2. Mediante una pantalla opaca con una ranura apropiada, se bloquean seis de los siete colores en los cuales se ha separado la luz al pasar por el primer prisma, dejando pasar tan solo uno de ellos. La luz restante pasa por el segundo prisma sin modificarse en absoluto, ya que en este caso tan sólo resta una de las componentes: el haz es homogéneo. Los objetos iluminados con esta luz serán negros si absorben este color en particular, o de ese mismo color en caso contrario. De esta forma, Newton demostró que el color de cada objeto depende de la iluminación y de la capacidad de absorción de cada color.

LAS APORTACIONES DE NEWTON Y SU IMPORTANCIA EN EL DESARROLLO DE LA FISICA

Isaac Newton; matemático, físico y astrónomo ingles, nacido en Woolsthorpe el día de navidad de 16421 y muerto en Londres el 1727, siendo enterrado en el pabellón de los hombres ilustres de la abadía de Westminster.
Se inmortalizó por el descubrimiento de las leyes de la mecánica y la gravitación universal, su explicación de la descomposición de la luz en los diferentes colores, y por sus nobles trabajos relativos al álgebra i la geometría, así como la invención (de forma independiente de Lebnitz) del calculo diferencial.
Otros de sus descubrimientos o invenciones importantes son:

Telescopio reflector de Newton,
obtención de los anillos de Newton (un fenómeno óptico que se produce por la refracción de la luz en materiales de grosor variable),

otros fenómenos ópticos como anillos de interferencias y el disco de luz blanca,

tubo de vacío par demostrar la caída de materiales,

etc.

Estudió en el colegio Trinidad (trinity college) de la universidad de Cambridge. Siguiendo técnicas de su maestro Barrow, familiarizándose con la geometría de Descartes y la aritmética de Wallis, descubrió el método de las tangentes2y el calculo de fluxsiones directas e indirectas (nuestras actuales derivadas), así como el teorema del binomio que lleva su nombre. En 1665 comenzó a pensar sobre la teoría de la gravitación universal, cuando (según la leyenda) le cayó una manzana en su jardín de Woolsthorpe. En 1671 expuso su hipótesis de la composición de la luz blanca, completando de esta forma la explicación dada por Descartes a los fenómenos como el arco iris y la reflexión. En 1675 comunicó a la docta corporación su explicación de los diferentes colores de los cuerpos expuestos a la luz blanca. De la misma forma, dio a conocer la teoría de los colores producidos por la superposición de líneas finas (anillos de Newton). Fue nombrado inspector, y posteriormente director, de la Real Casa de la Moneda, en 1696 y 1699 respectivamente. Seis años mas tarde fue nombrado caballero por la reina Ana.


Newton vino al mundo en una familia de pequeños propietarios de Woolsthorpe, en el condado de Lincolnshire (Inglaterra), antes de su nacimiento ya era huérfano de padre. Su infancia fue marcada por continuas enfermedades, su familia dudaba que sobreviviera muchos años. A esta temprana edad su principal afición era construir sus propios juguetes. A los tres años, su madre se casó de nuevo con un rector, dejando al joven Isaac con sus abuelos. Comenzó a estudiar en dos escuelas de Woolsthorpe, hasta q ingresó con doce años en la escuela de Grantham. No era un gran estudiante, pero un día se peleó con un compañero y decidió adelantarlo en los estudios: consiguió llegar a ser el primero en su clase.
Al rededor de los quince años, volvió a ayudar a la granja materna, por la muerte de su padrastro. Cuando iba a vender al mercado de Grantham, dejaba su trabajo al criado para leer tratados científicos, de no ser por esta picardía la ciencia se echaría a faltar uno sus principales exponentes en toda la historia. El reverendo William Ayscough, tío de Newton y diplomado por el Trinity College de Cambridge, insistió para que se matriculara en Cambridge, donde consiguió el bachillerato en matemáticas, física y geometría (se matriculó de física ya que quería entender los tratados de astrología, que en aquellos tiempos estaba mezclada con la ciencia real). Nuevamente, volvió a la granja materna, asolada por la peste, donde se dice que observó la caída de una manzana a la vez q veía la luna, cosa que le sirvió de inspiración para su famosa teoría de la gravitación universal. En un principio, no publicó sus resultados dado que no cuadraban con los datos disponibles en la época. Sin embargo, los que estaban equivocados eran los experimentales, cosa que no descubrió hasta años después.

Entre 1656 y 1666 enfocó sus investigaciones a la óptica. Hizo pasar la luz por un pequeño orificio hacia una habitación oscura. Hizo atravesar el haz por un prisma de caras no paralelas, obteniendo una figura similar al arco iris: había demostrado que la luz blanca está compuesta por todos los colores del arco iris. Otro descubrimiento importante en esta época es el telescopio de reflexión axial. Estos descubrimientos fueron compendiados en su primer libro importante, el óptica.

En 1666 aporta a las matemáticas el calculo infinitesimal (que el llamaba cálculo de fluxiones), con la cual cosa se puso al frente de las matemáticas contemporáneas. Este año fue el llamado año milagroso, ya que además de todos estos los descubrimientos ya enumerados realizó la primera formulación de las leyes de la mecánica.

Años posteriores fueron marcados por mejoras intensivas de las técnicas que había ido desarrollando, y culminaron con la publicación el verano de 1687 del libro de ciencia posiblemente más conocido de la historia, los Philosophiae naturalis principia mathematíca (los Principia), donde daba a conocer sus tres leyes para la dinámica, que se pueden resumir de la forma

Principio de inercia: Un cuerpo en reposo se mantiene en reposo, y un cuerpo en movimiento uniforme se mantiene en movimiento, mientras no sufra la aplicación de ninguna fuerza.
Segunda ley de Newton: Establece que la aceleración sufrida por un cuerpo es proporcional a la resultantes de las fuerzas sobre él aplicadas, siendo la constante de proporcionalidad el recíproco de la masa, . Esta ley establece la primera diferencia entre la masa (cantidad de inercia) y su peso (cantidad de fuerza gravitatoria entre dos cuerpos).

Principio de acción y reacción: Señala que toda fuerza que un cuerpo aplica sobre un segundo siempre va acompañada de una fuerza de igual intensidad, dirección y línea de acción, pero de sentido contrario, que el segundo cuerpo aplica sobre el primero. Este principio es equivalente al principio de conservación de la cantidad de movimiento.

Además, publicaba una relación matemática entre la fuerza gravitatoria entre dos cuerpos en el espació. Postulaba que dicha fuerza debe ser directamente proporcional al producto de cada masa e inversamente proporcional al cuadrado de la distancia entre ambos3. Además, la fuerza siempre es atractiva y en la línea que une ambos cuerpos. Esta proporcionalidad se convierte en una igualdad introduciendo la constante de la gravitación universal, G, de forma que podemos escribir de la forma

esta es la famosa ley de la gravitación universal. A partir de esta ecuación, pudo deducir matemática mente las órbitas elípticas de Kepler (el matemático errante).
La publicación de los «Principia» le conllevó algunas polémicas; Hooke (que ya lo había molestado cuando se publicó el «óptica») le acusó de plagio, cosa que hoy en día pocos historiadores creen posible. A la muerte de Hooke, el 1703, Newton se burló de su baja estatura con la conocida frase «si he visto más lejos es por que me he subido a hombros de gigantes» (que hoy en día figura en las monedas inglesas). Además, se jactó de haber «roto el corazón» de Hooke. Halley apoyó a Newton, aportando dados experimentales que confirmaban las predicciones de la teoría de Newton.

En 1693, hace 310 años, su perro, llamado Diamante, hizo caer una vela sobre unos manuscritos imposibles de rehacer, cosa que lo hizo caer en una depresión que le conllevó graves problemas psicológicos, de los que finalmente pudo salir airoso. En 1699 fue elegido director de la Casa de la Moneda, como premio a su buen hacer como guardián de dicho instituto.

En 1705 la reina Ana de Inglaterra lo nombró caballero, Sir Isaac Newton, y fue invitado a participar en las sesiones de la cámara de los Lores del parlamento británico. La leyenda cuenta que tan solo pidió la palabra una vez en varios años, cosa que causó gran espectador entre el resto de parlamentarios. Sus palabras fueron algo similar a «¿pueden cerrar la ventana? tengo algo de frío!».

En sus últimos años sufrió una piedra en la vesícula, que lo llevó a la muerte el veinte de marzo de 1727. Parece ser que no sufrió demasiado, hasta el último día hizo vida normal. Hoy en día descansa en la abadía de los hombre míticos de Westminster. El epitafio que reza en su tumba, redactado por Fatio, es el siguiente:

«Felicitaros los mortales que tal y tan grande
adorno del género humano haya existido.»

viernes, 11 de noviembre de 2011

TERCERA LEY DE NEWTON

La tercera ley, también conocida como Principio de acción y reacción nos dice que si un cuerpo A ejerce una acción sobre otro cuerpo B, éste realiza sobre A otra acción igual y de sentido contrario.

Esto es algo que podemos comprobar a diario en numerosas ocasiones. Por ejemplo, cuando queremos dar un salto hacia arriba, empujamos el suelo para impulsarnos. La reacción del suelo es la que nos hace saltar hacia arriba.

Cuando estamos en una piscina y empujamos a alguien, nosotros tambien nos movemos en sentido contrario. Esto se debe a la reacción que la otra persona hace sobre nosotros, aunque no haga el intento de empujarnos a nosotros.

Hay que destacar que, aunque los pares de acción y reacción tenga el mismo valor y sentidos contrarios, no se anulan entre si, puesto que actuan sobre cuerpos distintos.

¿ CUÁLES SON LAS REGLAS DEL MOVIMIENTO? TRES IDEAS FUNDAMENTALES SOBRE FUERZA?

LEYES DE NEWTON


La primera ley de Newton, conocida también como Ley de inercía, nos dice que si sobre un cuerpo no actua ningún otro, este permanecerá indefinidamente moviéndose en línea recta con velocidad constante (incluido el estado de reposo, que equivale a velocidad cero).

Como sabemos, el movimiento es relativo, es decir, depende de cual sea el observador que describa el movimiento. Así, para un pasajero de un tren, el interventor viene caminando lentamente por el pasillo del tren, mientras que para alguien que ve pasar el tren desde el andén de una estación, el interventor se está moviendo a una gran velocidad. Se necesita, por tanto, un sistema de referencia al cual referir el movimiento. La primera ley de Newton sirve para definir un tipo especial de sistemas de referencia conocidos como Sistemas de referencia inerciales, que son aquellos sistemas de referencia desde los que se observa que un cuerpo sobre el que no actua ninguna fuerza neta se mueve con velocidad constante.

En realidad, es imposible encontrar un sistema de referencia inercial, puesto que siempre hay algún tipo de fuerzas actuando sobre los cuerpos, pero siempre es posible encontrar un sistema de referencia en el que el problema que estemos estudiando se pueda tratar como si estuviésemos en un sistema inercial. En muchos casos, suponer a un observador fijo en la Tierra es una buena aproximación de sistema inercial.



La Primera ley de Newton nos dice que para que un cuerpo altere su movimiento es necesario que exista algo que provoque dicho cambio. Ese algo es lo que conocemos como fuerzas. Estas son el resultado de la acción de unos cuerpos sobre otros.

La Segunda ley de Newton se encarga de cuantificar el concepto de fuerza. Nos dice que la fuerza neta aplicada sobre un cuerpo es proporcional a la aceleración que adquiere dicho cuerpo. La constante de proporcionalidad es la masa del cuerpo, de manera que podemos expresar la relación de la siguiente manera:

F = m a

Tanto la fuerza como la aceleración son magnitudes vectoriales, es decir, tienen, además de un valor, una dirección y un sentido. De esta manera, la Segunda ley de Newton debe expresarse como:

F = m a

La unidad de fuerza en el Sistema Internacional es el Newton y se representa por N. Un Newton es la fuerza que hay que ejercer sobre un cuerpo de un kilogramo de masa para que adquiera una aceleración de 1 m/s2, o sea,

1 N = 1 Kg · 1 m/s2

La expresión de la Segunda ley de Newton que hemos dado es válida para cuerpos cuya masa sea constante. Si la masa varia, como por ejemplo un cohete que va quemando combustible, no es válida la relación F = m · a. Vamos a generalizar la Segunda ley de Newton para que incluya el caso de sistemas en los que pueda variar la masa.

Para ello primero vamos a definir una magnitud física nueva. Esta magnitud física es la cantidad de movimiento que se representa por la letra p y que se define como el producto de la masa de un cuerpo por su velocidad, es decir:

p = m · v

La cantidad de movimiento también se conoce como momento lineal. Es una magnitud vectorial y, en el Sistema Internacional se mide en Kg·m/s . En términos de esta nueva magnitud física, la Segunda ley de Newton se expresa de la siguiente manera:

La Fuerza que actua sobre un cuerpo es igual a la variación temporal de la cantidad de movimiento de dicho cuerpo, es decir,

F = dp/dt

De esta forma incluimos también el caso de cuerpos cuya masa no sea constante. Para el caso de que la masa sea constante, recordando la definición de cantidad de movimiento y que como se deriva un producto tenemos:

F = d(m·v)/dt = m·dv/dt + dm/dt ·v

Como la masa es constante

dm/dt = 0

y recordando la definición de aceleración, nos queda

F = m a

tal y como habiamos visto anteriormente.

Otra consecuencia de expresar la Segunda ley de Newton usando la cantidad de movimiento es lo que se conoce como Principio de conservación de la cantidad de movimiento. Si la fuerza total que actua sobre un cuerpo es cero, la Segunda ley de Newton nos dice que:

0 = dp/dt

es decir, que la derivada de la cantidad de movimiento con respecto al tiempo es cero. Esto significa que la cantidad de movimiento debe ser constante en el tiempo (la derivada de una constante es cero). Esto es el Principio de conservación de la cantidad de movimiento: si la fuerza total que actua sobre un cuerpo es nula, la cantidad de movimiento del cuerpo permanece constante en el tiempo.

miércoles, 2 de noviembre de 2011

FUERZA

La fuerza es una modelización matemática de intensidad de las interacciones, junto con la energía. Así por ejemplo la fuerza gravitacional es la atracción entre los cuerpos que tienen masa, el peso es la atracción que la Tierra ejerce sobre los objetos en las cercanías de su superficie, la fuerza elástica es el empuje o tirantez que ejerce un resorte comprimido o estirado respectivamente, etc. En física hay dos tipos de ecuaciones de fuerza: las ecuaciones "causales" donde se especifica el origen de la atracción o repulsión: por ejemplo la ley de la gravitación universal de Newton o la ley de Coulomb y las ecuaciones de los efectos (la cual es fundamentalmente la segunda ley de Newton).
La fuerza es una magnitud física de carácter vectorial capaz de deformar los cuerpos (efecto estático), modificar su velocidad o vencer su inercia y ponerlos en movimiento si estaban inmóviles (efecto dinámico). En este sentido la fuerza puede definirse como toda acción o influencia capaz de modificar el estado de movimiento o de reposo de un cuerpo (imprimiéndole una aceleración que modifica el módulo o la dirección de su velocidad) o bien de deformarlo.
Comúnmente nos referimos a la fuerza aplicada sobre un objeto sin tener en cuenta al otro objeto u objetos con los que está interactuando y que experimentarán, a su vez, otras fuerzas. Actualmente, cabe definir la fuerza como un ente físico-matemático, de carácter vectorial, asociado con la interacción del cuerpo con otros cuerpos que constituyen su entorno.
El término fuerza se usa comúnmente para referirse a lo que mueve un objeto; por ejemplo la fuerza necesaria para cargar un avión.

El concepto de fuerza fue descrito originalmente por Arquímedes, si bien únicamente en términos estáticos. Arquímedes y otros creyeron que el "estado natural" de los objetos materiales en la esfera terrestre era el reposo y que los cuerpos tendían, por sí mismos, hacia ese estado si no se actuaba sobre ellos en modo alguno. De acuerdo con Aristóteles la perseverancia del movimiento requería siempre una causa eficiente (algo que parece concordar con la experiencia cotidiana, donde las fuerzas de fricción pueden pasar desapercibidas).
Galileo Galilei (1564 - 1642) sería el primero en dar una definición dinámica de fuerza, opuesta a la de Arquímedes, estableciendo claramente la ley de la inercia, afirmando que un cuerpo sobre el que no actúa ninguna fuerza permanece en movimiento inalterado. Esta ley, que refuta la tesis de Arquímedes, aún hoy día no resulta obvia para la mayoría de las personas sin formación científica
Se considera que fue Isaac Newton el primero que formuló matemáticamente la moderna definición de fuerza, aunque también usó el término latino vis ('fuerza') para otros conceptos diferentes. Además, Isaac Newton postuló que las fuerzas gravitatorias variaban según la ley de la inversa del cuadrado de la distancia.
Charles Coulomb fue el primero que comprobó que la interacción entre cargas eléctricas o electrónicas puntuales también varía según la ley de la inversa del cuadrado de la distancia (1784).
En 1798, Henry Cavendish logró medir experimentalmente la fuerza de atracción gravitatoria entre dos masas pequeñas utilizando una balanza de torsión. Gracias a lo cual pudo determinar el valor de la constante de la gravitación universal y, por tanto, pudo calcular la masa de la Tierra.
Con el desarrollo de la electrodinámica cuántica, a mediados del siglo XX, se constató que la "fuerza" era una magnitud puramente macroscópica surgida de la conservación del momento lineal o cantidad de movimiento para partículas elementales. Por esa razón las llamadas fuerzas fundamentales suelen denominarse "interacciones fundamentales".

lunes, 24 de octubre de 2011

ONDAS SISMICAS

Definición de las ondas sísmicas.

Las ondas sísmicas son ondas de propagación; transmiten la fuerza que se genera en el foco sísmico hasta el epicentro en proporción a la intensidad y magnitud de cada sismo; son ondas vibratorias entre las cuales se distinguen las ondas P, a la que sigue una ráfaga de oscilaciones irregulares.

Tipos de ondas.

Las Ondas (P), al igual que las ondas sonoras se mueven en virtud de la compresión y expansión alternativa del medio que atraviesan.

Estas ondas pueden desplazarse a través de cualquier medio sólido, líquido, o magmático, ya que pueden atravesar sin ninguna dificultad el manto y el núcleo de la Tierra. Se llaman así porque son las primeras ondas que registran los sismógrafos, debido a su mayor velocidad y porque la propagación se efectúa en el mismo sentido que la vibración de las partículas. La velocidad de propagación va de los 8 a los 12 km./seg., dependiendo de los materiales que atraviesan.

Las Ondas (S), desarrollan un movimiento ondulatorio o serpenteante y se progresan de forma transversal y perpendicular a la dirección de propagación; su velocidad es más lenta que las ondas (P), de 4 a 8 km./seg, seguidas también de una ráfaga de oscilaciones más fuertes, se conocen como ondas de sacudida, la velocidad de las ondas S depende de la densidad y de la rigidez de las masas que atraviesa (resistencia a la distorsión o cizallado). Se registran en los sismógrafos en segundo lugar.

A partir del retraso de las ondas (S), se puede determinar la distancia a la que se ha producido el terremoto y su localización o “epicentro”, lugar donde se produce con mayor fuerza la liberación de la energía. Las ondas (S), en su propagación por el interior de la tierra, sufren un rechazo cuando se enfrentan con la rigidez y densidad del núcleo que no las deja pasar.

Además de la manifestación de las ondas P, y S, la tierra puede trasmitir otros dos tipos de ondas que se desplazan por la superficie, basadas en una reflexión continua que se manifiesta en los limites superiores e inferiores de las capas superficiales. A este tipo de ondas se las conoce colectivamente como ondas L porque desarrollan períodos largos.

Las Ondas (L), se manifiestan después de las ondas P y las ondas S, se propagan sólo por la superficie mediante períodos vibratorios más largos que los anteriores. Desarrollan una velocidad más lenta, 3’5 km./seg., y son las responsables de producir los desplazamientos en la superficie y el desarrollo de las gravifisas, que producen los efectos más catastróficos en el epicentro de un terremoto de fuerte intensidad, siguiendo el sentido de propagación de forma parecida a las ondas que se producen en el agua de un estanque después de arrojar una piedra.
A su vez, las ondas (L) se dividen en dos clases, ondas de Rayleigh y ondas de Love. La primera de estas ondas la predijo el tercer Lord Rayleigh en 1.887, veinte años antes de que se identificaran en sismógrafos.
Las Ondas (R), o de Rayleigh, El movimiento de las partículas se desarrolla de forma circular, elípticas sobre el plano de propagación;, son ondas de periodo largo, que producen en las partículas afectadas movimientos elípticos sobre planos verticales y en sentido opuesto a la dirección de propagación.
Las Ondas (V), u ondas de Love, El movimiento es horizontal y perpendicular a la dirección de propagación. El paso de este tipo de ondas produce una dislocación en las masas de la superficie o lugar donde se desarrollan, debido a la compresión y expansión alternativa del medio que atraviesan. Estas ondas se identificaron en los sismogramas antes de que se hubiera descubierto su existencia. Las explicó un matemático de Oxford, E. H. Love, como una extensión de la teoría de Rayleigh y desde entonces se las conoce como ondas de love.


Tanto las ondas de Rayleigh como las ondas de Love se desvanecen a diferentes profundidades, según sus períodos; de su desarrollo se ha obtenido valiosa información para distinguir las estructuras continentales y oceánicas de la corteza terrestre.

La velocidad de las ondas sísmicas es variable, determinadas estas por las propiedades elásticas de las diversas capas que atraviesa como pueden ser el tipo de roca, temperatura, presión etc. Pero principalmente la velocidad de las ondas sísmicas se debe a la magnitud de la energía que se libera en el hipocentro, mediante lo que se conoce como una explosión, que es la responsable de generar las ondas sísmicas.
Las ondas (P), aumentan la velocidad de propagación al entrar en el interior del manto, ya que esta zona está compuesta por las corrientes de convección que forma la Astenosfera;, ésta es una zona de masa magmática en movimiento, el mismo que aprovechan las ondas para aumentar la velocidad de propagación.
El estudio de los sismogramas determina las características de las ondas sísmicas; el hecho de volver éstas a la superficie, nos ha permitido conocer la estructura interna de la Tierra.
Las vibraciones que experimenta el desarrollo de un terremoto quedan generalmente impresas en los sismogramas, fundamentales para el estudio de cada seísmo.
La intensidad marca el spin, el golpe seco o empuje que recibe de inmediato la estructura que envuelve y recoge al hipocentro, donde se desarrolla la fuerza que genera el terremoto, mientras que la magnitud es la energía que se libera en el epicentro, punto por el que pasan las ondas, así la magnitud marca la duración de la descarga de energía, el volumen de la energía liberada y lo hace en la escala de Richter.
A veces se necesitan los datos de otras estaciones sísmicas para conocer la magnitud, intensidad, distancia o situación del epicentro, profundidad del hipocentro (cuestión esta última más difícil de establecer), hora de llegada de las ondas y características de las zonas que atraviesan; éstas determinan el estudio de las mismas.
La velocidad de propagación de las distintas ondas sísmicas por el interior de la Tierra, es diferente en cada terremoto; uno por los materiales que atraviesa y otro por el estado físico de cada una de esas zonas. En su propagación de las ondas sísmicas experimentan diversas reflexiones y refracciones a su paso por los distintos materiales que componen cada zona.

El foco sísmico es muchas veces fijo dentro del radio litosférico, responsable de desarrollar los terremotos del proceso periódico; otras veces el hipocentro es variable debido a la mecánica que produce los terremotos del proceso espontáneo, liberación que, con frecuencia, se produce en la zona del manto superior, (radio astenosférico), así como los terremotos más profundos. Entre estos últimos hay algunos terremotos muy peligrosos para la población civil (zona del epicentro); estos se desarrollan por el proceso mixto, consecuencia de la unión de los dos procesos que desarrolla la mecánica sísmica (proceso periódico y proceso espontáneo). Son los terremotos más catastróficos, ya que se une la liberación de las dos energías.






 

miércoles, 12 de octubre de 2011

CUALIDADES DEL SONIDO

El sonido, en combinación con el silencio, es la materia prima de la música. En música los sonidos se califican en categorías como: largos y cortos, fuertes y débiles, agudos y graves, agradables y desagradables. El sonido ha estado siempre presente en la vida cotidiana del hombre. A lo largo de la historia el ser humano ha inventado una serie de reglas para ordenarlo hasta construir algún tipo de lenguaje musical.
[editar]Propiedades
Las cuatro cualidades básicas del sonido son la altura, la duración, el timbre o color y la intensidad, fuerza o potencia.
Cualidad Característica Rango
Altura Frecuencia de onda Agudo, medio, grave
Intensidad Amplitud de onda Fuerte, débil o suave
Timbre Armónicos de onda o forma de la onda. Análogo a la textura Depende de las características de la fuente emisora del sonido (por analogía: áspero, aterciopelado, metálico, etc)
Duración Tiempo de vibración Largo o corto
[editar]La altura
Véanse también: Tono (acústica) y altura (música)
Indica si el sonido es grave, agudo o medio, y viene determinada por la frecuencia fundamental de las ondas sonoras, medida en ciclos por segundo o hercios (Hz).
vibración lenta = baja frecuencia = sonido grave.
vibración rápida = alta frecuencia = sonido agudo.
Para que los humanos podamos percibir un sonido, éste debe estar comprendido entre el rango de audición de 20 y 20.000 Hz. Por debajo de este rango tenemos los infrasonidos y por encima los ultrasonidos. A esto se le denomina rango de frecuencia audible. Cuanta más edad se tiene, este rango va reduciéndose tanto en graves como en agudos.
[editar]La intensidad
Véanse también: Intensidad de sonido y sonoridad
Es la cantidad de energía acústica que contiene un sonido, es decir, lo fuerte o suave de un sonido. La intensidad viene determinada por la potencia, que a su vez está determinada por la amplitud y nos permite distinguir si el sonido es fuerte o débil.
La intensidad del sonido se divide en intensidad física e intensidad auditiva, la primera esta determinada por la cantidad de energía que se propaga, en la unidad de tiempo, a través de la unidad de área perpendicular a la dirección en que se propaga la onda. Y la intensidad auditiva que se fundamenta en la ley psicofísica de Weber-Fechner, que establece una relación logarítmica entre la intensidad física del sonido que es captado, y la intensidad física minima audible por el oido humano.
Los sonidos que percibimos deben superar el umbral auditivo (0 dB) y no llegar al umbral de dolor (140 dB). Esta cualidad la medimos con el sonómetro y los resultados se expresan en decibelios (dB) en honor al científico e inventor Alexander Graham Bell.
En música se escriben así:
Nombre Intensidad
piano pianissimo(ppp) más suave que pianissimo
Pianissimo (pp) muy suave
Piano (p) suave
Mezzo Piano (mp) medio suave
Mezzo Forte (mf) medio fuerte
Forte (f) fuerte
Fortissimo (ff) muy fuerte
forte fortissimo (fff) más fuerte que fortissimo
[editar]El timbre
Artículo principal: Timbre (acústica)
Es la cualidad que confiere al sonido los armónicos que acompañan a la frecuencia fundamental. La voz propia de cada instrumento que distingue entre los sonidos y los ruidos.
Esta cualidad es la que permite distinguir dos sonidos, por ejemplo, entre la misma nota (tono) con igual intensidad producida por dos instrumentos musicales distintos. Se define como la calidad del sonido. Cada cuerpo sonoro vibra de una forma distinta. Las diferencias se dan no solamente por la naturaleza del cuerpo sonoro (madera, metal, piel tensada, etc.), sino también por la manera de hacerlo sonar (golpear, frotar, rascar).
Una misma nota suena distinta si la toca una flauta, un violín, una trompeta, etc. Cada instrumento tiene un timbre que lo identifica o lo diferencia de los demás. Con la voz sucede lo mismo. El sonido dado por un hombre, una mujer, un/a niño/a tienen distinto timbre. El timbre nos permitirá distinguir si la voz es áspera, dulce, ronca o aterciopelada. También influye en la variación del timbre la calidad del material que se utilice. Así pues, el sonido será claro, sordo, agradable o molesto.
[editar]La duración
Es el tiempo durante el cual se mantiene un sonido. Podemos escuchar sonidos largos, cortos, muy cortos, etc.
Los únicos instrumentos acústicos que pueden mantener los sonidos el tiempo que quieran, son los de cuerda con arco, como el violín, y los de viento (utilizando la respiración circular o continua); pero por lo general, los instrumentos de viento dependen de la capacidad pulmonar, y los de cuerda según el cambio del arco producido por el ejecutante.
[editar]Fuentes del sonido

El sonido es un tipo de ondas mecánicas longitudinales producidas por variaciones de presión del medio. Estas variaciones de presión (captadas por el oído humano) producen en el cerebro la percepción del sonido.
Existen en la naturaleza sonidos generados por diferentes fuentes de sonido y sus características de frecuencia (altura), intensidad (fuerza), forma de la onda (timbre) y envolvente (modulación) los hacen diferentes e inconfundibles, por ejemplo, el suave correr del agua por un grifo tiene las mismas características en frecuencia, timbre y envolvente que el ensordecedor correr del agua en las cataratas del Iguazú, con sus aproximadamente 100 metros de altura de caída libre, pero la intensidad (siempre medida en decibelios a un metro de distancia de la zona de choque) es mucho mayor.
De los requisitos apuntados, el de la envolvente es el más significativo, puesto que es "la variación de la intensidad durante un tiempo, generalmente el inicial, considerado", el ejemplo de la diferencia de envolventes es la clara percepción que tenemos cuando algún instrumento de cuerda raspada (violín, violoncelo) son ejecutados "normalmente" con el arco raspando las cuerdas o cuando son pulsados (pizzicato); mientras que en el primer caso el sonido tiene aproximadamente la misma intensidad durante toda su ejecución, en el segundo caso el sonido parte con una intensidad máxima (la cuerda tensa soltada por el músico) atenuándose rápidamente con el transcurso del tiempo y de una manera exponencial, de manera que la oscilación siguiente a la anterior sigue una ley de variación descendente. Entre los instrumentos que exhiben una envolvente constante tenemos primordialmente el órgano de tubos (y sus copias electrónicas), el saxofón (también de aire, como el órgano) y aquellos instrumentos que, no siendo de envolvente fija, pueden fácilmente controlar esta función, como la flauta (dulce y armónica), la tuba, el clarinete y las trompetas, pífano y silbatos, bocinas de medios de transportes (instrumentos de advertencia); entre los instrumentos de declinación exponencial tenemos todos los de percusión que forman las "baterías": bombos, platillos, redoblantes, tumbadoras (en este ramo debemos destacar los platillos, con un tiempo largo de declinación que puede ser cortado violentamente por el músico) mediante un pedal.